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INTRODUCTION

Methods of differencing the Eulerian form of the hydrodynamic
equations are investigated. One wishes to find a method for machine
calculations that could be used in hydrodynamic problems involving
large distortions of matter in two space dimensions. Boundaries be-
tween materials are to be carried and moved through the fixed Eulerian
mesh. Given a mesh af some time and with pfoper boundary conditions,
the problem will be to carry the values of the quantities stored in
each mesh point forward in time explicitly to a small time &t later.
The problem will first be discussed in one space dimension and then
for the case of two dimensions. This numerical method is for compres-

e
sible flow in the presence of shocks. The IBM Electronic Data Processing

Machine, Type TO4, was used for the numerical computations.
The hydrodynamic equations for mass flow, momentum change, and en-

ergy change are, respectiveiy:

gg_:-v.pv. | (1)
P 2‘;’ = - p (2)



dE -
p'a'g=-v°(PV) (3) v
where p is the density, V is the material velocity, p is the pressure,
and E is the total energy per unit mass. E is the sum of the internal

energy per unit mass (¢) and the kinetic energy per unit mass, i.e.,

1 = -
E=E+—2-V°V.




CHAPTER I

DIFFERENCING IN ONE DIMENSION

Values of p., V., and g, will be considered as the value of p, V,
J J

J
and g, reaspectively, at the center of the jth cell of the mesh. Strictly

speaking, the product of pj and the volume of the jth cell is the mass in
the jth cell. The product of Vj and the product of Ej with this mass are

the momentum and energy, respectively, in the jth cell. For a one-dimen-

sional space mesh, a simple method of differencing Eq.CL)(S— éégzl) J

/

in the jth cell would yield

n+l n n
where (pV) is the value selected for (pV) on the right boundary of

J+1/2

the jth cell and (pV) is the value on the left., By n is meant that

j-1/2
the quantity is to be evaluated from the mesh values at time step n, and
nt+l is the value resulting from the solution of Eq. (4) at a time &t

later (one time step later).
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Equaetion (4) is in the form which we will call conservative. The

value of the flow quantity, (oV), on the right boundary of cell j is the
same value used on the left side for cell j+l. To illustrate a result
obtainable from Eq. (4), we take a box (Figure 1) with no flow out either
;ﬁd, i.e., (p’V)l_l/2 = (pV)JM+l/2 = 0. Then we find from Eq. (L) that
PN ij(p?*l - p?) = 0 analytically, i.e., mass is conserved exactly.
J=1
It has been explicitly assumed that (pV)j+l/2 in cell j is equal (pV)j-l/z
for cell j+l, i.e., the flow term (pV) is single valued on a cell boundary. A ]
If (pV)l_l/2 and/or (pV)JM+1/2 are not zero, then the mass of the system
will be changing as specified by the boundary conditions on these boundary
values. It may be noted that Eq. (L) is conservative regardless of how
(pV)j-l/z and (pv)j+l/2 are evaluated when (pV)j+l/2 for cell j is equal
(p‘V)j_l/2 for cell j+l.

Assuming one starts at j = 1, with suitable boundary values for

R n+l

(pV)l_l/2 and (QV)JM+1/2’ the problem of evaluating py in Eq. (4) ve-
comes one of evaluating (DV)3+1/2 in each cell J. (pv)j-l/z will have .

already been celculated in the preceding cell by the same method used in

-8-




calculating (pV in the present cell and will be used in a conserv-

)j+l/2

ative manner. Starting at j = JM, the situation is simply reversed.
Equations (2) and (3) are not in the form for conservative dif-

£ N . : do _ 3, %,

erencing. Remembering that for a scalar o, T - 5t +7V - %, Eqg. (2)

in one dimension becomes

| v N dp I
PEIRTI=® -

Adding V g% to both sides and using Eq. (1),

V) _ _ 32 _ (o) A .y Ae¥) _ _ Az + ov7)
ot T T T W ok 3x ox

Equation (3) is changed to conservative form similar to Eq. (2) and in

differential form gives

d(pE) _  3(pV + pVE)
ot = ox

Thus, in conservative difference form, Egs. (1), (2), and (3) are

written

2 e o o) ’
ol ma_ B[, VE)n o+ o7 )n (5)
P53 Py Vs TR P TP s/t WP TP g0 ’



and

n+l En+l n ot n n
. . - p, B, = = + pVE). - (PV + pVE).,
b5 M TP B} = & {(PV PVE) s 1/ = (BV + PVB) g /np (6)

This system of equations will be solved after finding a difference method
for the flow quantities on the right side of a cell in the order presented.

That is, p?+l from Eq. (4) will be used to solve for Vg*l in Eq. (5); p?+l

d
and V§+l will then be used to solve for 8?*1 [E?*l = ag+l +4% (Vg+l)2] in
Eq. (6). The solution of Egs. (%), (5), and (6) for all mesh points is
called the n + 1 calculation.

Two difficulties in solving the above system of difference equations
are related to their stability and their behavior in attempting to repre-
sent shock discontinuities. The method of von Neumenn and Richtmyerl to
solve both of these difficulties is to introduce a fictitious bulk-viscos-
ity pressure, Q, and to replace the material pressure in the above equations
by the material pressure plus Q. This viscosity spreads the shock region
and thus turns the discontinuity into a region of continuity and gives
stebility to the other regions of flow because of its second order ef-
fects.

We will consider viscosity pressures of the form Q = - ¢ %%. Four

types of particular interest will be characterized by

>
5% ov
oy = G 7P ,&' (7)
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dx
ox
0pic = 1 7 PIVI (9)
and
010 = CroP (10)

Ory gives the Richtmyer-von Neumannl type viscosity. OrA gives the

Landshoff2 type viscosity when C is the sound speed. Upic gives the

effective viscosity of the "particle-in-cell" m.et‘hod.5 o, ~ 1s a type

LO

viscosity introduced in this paper with two-dimensional machine calcula~

tions in mind. depengs on the temperature, as does C, but does not

L0

require taking & square root as does C. Cl is a constant used to set

the magnitude of the viscosity term. CLO is also a constant. CLO

in some region and

is

LO
at some time for the problem at hand. If the values of p, p, and C in

determined by equating o , (with C; given) and ¢

the deésired region and at the desired time are given by D, p, and C,

éigg. In the piston problem to be presented,

2p
the values of P, p, and C were the theoretically expected values taken

respectively, then CLO = Cl

from the reflected shock region.

A stability crn’.ter:’mn:L for the present system which is not uncondi-
.tionally unstable is not the most pertinent consideration for selecting
5t. Experience has shown that &t will have to be roughly ten times

smaller than required by the stability requirement to give good accuracy.

o i




Iv]
C

in such a manner that matter will require roughly ten time steps to cross

Let M (= ) be the Mach number. For M > 1, 8t will have to be selected
a cell. For M <1, the selection of 8t is to be made so that the sound
wave takes roughly ten time steps to cross a cell.

Second-order terms may be added to Egqs. (1) and (3) which effectively
spread the shock and have the same stabilizing effect that the term Q does
in Eq. (2). We will consider in one dimension a mass diffusion term in
Eq. (1) and a heat conduction term in Eq. (3). It should be noted that
while the replacement of p by the material pressure plus Q results in a
dissipative term§ in Eq. (3), this term does not have the form of heat
conduction.

The quantities on the right boundary of a cell in Egs. (&), (5), and

(6) will be designated by
(pV)j_,_l/2 = (pV,) - C, Dj+l/2(pj+l - pj) (11)

(P + oWV s 0 = By + @+ (T) * Vg | (12)

(pv + pVE)j+1/2 = (p, + Q) V_ + (o V,) E,

where each separate appearance of p, V, p, and E is distinguished by an

alphabetic letter as a subscript. These alphabetically subscripted terms A

-12- ’




are p, Va’ Pys Py Vb’ Vd? Py Ve’ Pos Vc’ and Ea‘ Each of these terms,
as discussed in the next paragraph, will be evaluated on the J + 1/2
_ boundary of the cell j. Dj+l/2 is the portion of the explicitly added
mass diffusion term which is to be considered a function of p, V, and g;
Hj+l/2 is the corresponding function in the heat conduction term. CO is
the constant appearing in the explicitly added mass diffusion term; 02 is
the corresponding constant in the heat conduction term. @ is the explic-
itly added viscosity term as designated by Egs. (7), (8), (9), or (10).
We now consider various differencing types. Let fj represent any
single alphabetically subscripted quantity pﬁhg{hﬁpgg the explicitly
added diffusion terms represented in Egs. (11), (12), or (13) in the jth
cell. The types of differencing of these terms considered here will be

£+ E,
Type It fs0/p =3

Type II: = fj if VT >0
fj+l/2< =0 if VT=O

-13-




Type III: = (6f; + 3y, - fj_l)/8 if Vp >0
fj+l/2¥ =0 if VT = 0
= (6fj+l + 3fj - fj+2)/8 if Vp <O

-

/
Type IV: = (W5 + £y - fj_l)/u if Vp >0
fj+l/24 =0 if Vp=0
= (hfj+l + fj - fj+2)/1+ if Vp <0

\

Type I gives a linear differencing scheme. For Types II, III, and IV,

we define the selected cell to be j if VT >0 or to be jJ+ 1 if VT < 0.

Vs @ test flow value, is usually taken as Vy = (Vj +V...). Thus, J

g+l
is the selected cell if the flow is to the right and J + 1 if the flow
is to the left at j + 1/2. Type II indicates that one is to use the
value in the selected cell as the value on the boundary. Type III is
the result of a quadratic fit of f(x), centered in the selected cell,
using the values in the selected cell and the two contiguous cells and
evaluated for x on the j +'l/2 boundary. Type IV is an extrapolation
from the value in the selected cell to the j + 1/2 boundary using the

slope given by the cells on both sides of the selected cell. It may be

-14-



noted that all four types of differencing schemes can be characterized
by three numbers, say, gl, 52, and g5. If one writes
4

fafy * ala * 8575 if V.>0

i

Ti1/2q T if V. =0

b T T BTt BT .
gl+§2+§5 T

\

then one has the correspondence

Type & &y &

)
I 1 1 0
11 1 0 0
III 56 3 -1
v b 1 -1

In the present work, V, = (Vj + V ) is used to evaluate Va from one of

T

the above schemes, The resultant value of Va is used as the test value

J+l

when differencing any of the other alphabetically subscripted terms.

Obviously, only Type I differencing of P, will be considered, i.e., one

would not set the pressure to zero on a cell boundary if the velocity

were zero at that point.

-15-



The preceding pare.graph merely outlines the prescription for carrying
out the various differencing schemes. At this point, it seems appropriate
to give a somewhat more detailed discussion of the significance of the
last three schemes from both the mathematical and physical points of view.

Type II differencing gives a diffusion or second order effect. TFor

VT > 0 on both sides of a cell, the derivative of f in cell j will be rep-

resented as

of _7J j-1
&j 3%

which would normslly be called the derivative of f at j - 1/2. An expan-
2

sion, £'(x + h) = £'(x) + h - (%) + = f"’(x) 4+ .v., yields £' 5-1/2

= fé 52x f"(x) when only the first order correction term is used. Cor-

1
respondingly, for VT < 0 on both sides of the cell, we find fj-i-l /2 = fj

BX on of .
+ = fj(x). Thus, for VT = a constant, VT = would be given by

TB——-—V £ |v| £}

for Type II differencing. If V_ were a constant in Eg. (11) end P, Were
treated by Type II differencing, then a mass diffusion term would result
from this differencing. If Va were not constant and also given Type II
differencing, & more complicated type of second order velocity term would
also be present. Differencing V4 in Eq. (12) and E, in Eq. (13) by Type II

gives second order effects in the pic me’c‘hod..5

=16~




Type III differencing gives a fitting of the derivatives, i.e., for

V., > 0 on both sides,

T

3 6(fJ. - E, )+ 3(E, - fj) - (£ - fj_e)

ox. B5x
dJd

= (6135_1/‘2 * 5a/0 f3_3/2)/8

If V, < 0 on both sides, then f is used in the derivative fit.

1]
T +3/2
Type IV is similar except that it uses extrapolation of the derivative.

If Vv, > O on the right and V., < O on the left of cell j, then Types ITI

T T
and IV give
of fj+1 - fj-l
axj - 26x

On the other hand, if VT < 0 on the right and VT > 0 on the left of

cell j, then Type III gives

f;]+J. - f,j-l _1 fj+2 - f,j-2
‘ 20x% 2 I5x

Q/
H
PO\

of _ 5 f,j+1 - fj-l 21 f,j+2 - fj-z
3§3 25X Tox
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When VT has different signs on opposite sides of a cell, we have a so-
called stagnation region (low velocity region). The last three equations
show how % in the jth cell would be .calculated from Types III and IV
differencing in a stagnation region. Since these latter calculations
use ordinary linear type differencing for the derivatives, or weighted
combinations, there are no .diffusion effects from Types III and IV dif-
ferencing in a stagnation region.

The first test problem Vselected for machine calculation was that of
a steady state infinite shock moving to the right and in the leftmost
cell at time zero. This is called the piston problem. The right side
of the rightmost cell (JM) was selected to be a rigid wall so that the
reflected shock could be studied. The application of the Hugoniot rela-
tions in this problem and in the fractured diaphragm problem to be pre-
sented later, are given elsewhereu and will not be discussed in detail
in this paper. These theoretical steady state solutions will be given
on the graphs as straight lines. A polytropic gas will be assumed. We
set \E:_;bp end p = kpO,where b is the specific heat at constant volume,
k is the gas cons;;‘;j;nd © is the temperature. We take b = 0.06 and
k = 0.04 so that y(= 1 + %) is % In front of the shock the temperature
and velocity are zero and the density is unity. The Hugoniot relations
then give p_ = %, 0_ = 8 %, and the shock velocity (V_) equals 4/3 when
the material velocity behind the shock is unity. Thus, at the left
boundary and to the left of this point, the conditions are given by
Py=P1afo =t Vy=Vg/p=1 8040, =0 5, =8 %‘ The

-18-




condition for reflection at the boundary JM + 1/2 is satisfied by setting

v -V )

awl = Var a1 = Caw @ Papa = P

less of the differencing scheme considered here, these conditions insure

It may be noted that, regard-

no mass flow, (pV) = 0, and no energy flow, (pV + pVE) = 0,

Jil/2 Jl/2
out of the system at the JM + 1/2 boundary. Also, all diffusion terms

vanish except for Q at JM + 1/2.

Figures 2 through 29 show some of the results of various differencing

methods for the piston problem. In all these examples, pa = pb, Pg = Py

= D4 and Va = Vb = Vc. Some test problems were run using Py # P, and
leaving Q out of Eq. (15), but all such problems gave poorer results than
the ones shown. Poorer results were also obtained when the mass flow

terms were not kept equal. We set (péva) = ( (p .V, ) by the above

ppVy) =
equality of the individual p's and V's. Whole ternm, as contrasted to
individual factors, were differenced by the above-mentioned types without
any significant improvements. An example of this sort would be to take
(pava) = fi+l/2 and select Types I, II, III, or IV differencing for this
whole term,

When the calculation for Q results in a negative number, one gener-
ally considers that there is a rarefaction region, i.e., %E > 0, Since
one does not wish to spread a rarefaction region, the Q should be cut off
(@ = 0) if it is negative. The word cut after the viscosity designation

on the graphs means that a test on %z was performed and Q was set to

zero if 52 > 0. The explicit heat diffusion term, characterized by

(Text continues on page 49.)
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02 # 0, was cut off by the same criterion on the velocity gradient. The
explicit mass diffusion term, characterized by CO £ 0, was cut off if it
was negative. If the word "cut" does not appear after the term charac-
terized by CO’ Cl’ or 02’ then the corresponding term was not cut off.
The theoretical piston problem should have no rarefactions, but since
the machine calculations give oscillations, the use of cut off would
give different results for machine calculations. The time at which the
various curves are plotted may be calculated (if desired) by kﬁowing the
shock velocity (4/3) end reflected shock velocity (2/3) in combination ‘
with the plotted position of the appropriate straight line theoretical
solutions.

Figures 2 through 6 show some results for the case when Py Va’ P>
etc. are each differenced by Type 1 differencing,-i.e., no low order dif-
fusion effects are introduced due to differencing. The density in Figure 2
is plotted at two times to show that the oscillations do not grow and though
the calculated shock lags the theoretical shock, the shock speed is cor-
rect. The fact that the shock speed is correct in all the piston problems
presented seems to be the result of the conservative differenciné form and .
not the differencing types. Throughout, we have taken the shock front po-
sition at which the density has a value halfway between value preceding
and the value behind the shock front. In Figure 2 the shock is late by
about two cells because of an initial delay. The lateness or earliness
of the shock front is dependent on the type differencing used. Figures 2

and 3 used the Richtmyer-von Neumenn viscosity with the magnitude (Cl)
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differing by a factor of six. Figures 3a and 3b show the shock before
and after reflection. E and p of the reflected shock are plotted to
show that the oscillations in p and © are qut of phase with each other.
This phase relation suggested the type mass diffusion coefficient se-
lected in Figure 5. Figure 5 shows, in an extreme case, the effects of
mass diffusion on the reflected shiock density. Here the density is low
by about 15%. Figure 6 shows about the best results that were obtained
for the reflected shock from all Type I differencing. Similar results
could be obtained by using the Landshoff_viSCOSity. As expected, the
results in the reflected shock region (stagnation region) were not
nearly as good when a Richtmyer-von Neumann or pic viscosity was used.
This is, of course, due to their dependence on velocity rather than
temperature. The oscillations in Figure 2 which result from not enough
diffusion may also be considered to be the result of not enough entropy
change. Similarly, Figure 5 would appear to show too much entropy change.
Figures 7 through 29 show the results for the various diffusion ef-
fects introduced by combinations of the four types of differencing with
explicit heat conduction and viscosity. By unbounded in Figure 11 we
meén that the oscillations in the reflected shock were greater than the
capacity of the machine, i.e., greater than about 10*58. The incident
shock is fairly good in most of the situations shown. The wprst cases
shown occur when Py, is differenced as Types I or II for certain cases
(Figures 8, 9, 10, 11, 12, 13, and 21). Thus, finding the correct

scheme for producihg a good reflected shock appears as the more
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difficult problem. TFor the reflected shock (stagnation) region, one can
see from the curves that one needs both an explicit heat conduction and
.apmexpliq;§«y;§cosity to produce the proper entropy change. We will now
discuss the preferred scheme, along with the reasons for its selection,
and mention some possible modifications. Thus, the curves will not be
discussed individually but will be referred to at various times to il-
lustrate conclusions.

We wish to find the best scheme for evaluating the terms in Egs. (ll),
(12), and (13). We have already seen that we should take p, = P and p V,_
=p V. = pcvc. We calculate P, by Type 1 differencing. We are left with

b'b

the problem of selecting (P Va’ Vd, E Ve, and the three explicit dif-

)
fusion terms. We will give Vd and Ea Type II differencing for several
reasons. First, Type II takes the least machine time of the four types
considered. Second, the equations need diffusion effects for stability.
Third, these diffusion effects are of the right order of masgnitude for
shocks and do not result in excessive spreading of shocks (see Figures 7
through 29). We generally let Ve = Va’ since Va will have already been
calculated, though calculations show that its selection is not very im-
portant. We are now left with the choice of the diffusion terms and the
mass flow (péva) as the major problem. If a stagnation region or region
of low velocity (where the pic type viscosity, introduced by selecting

vV, as Type II, goes to zero) is to be present in a problem, then one

d

should have an explicit viscosity and heat conduction term. The best
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type viscosity is then that given by Landshoff, as may be seen from Fig-
ures 15, 16, 17, 18, 23, and 24. If one really worries about machine
time and if one can approximate the stagnation region sound speed, the

viscosity may be used. The best heat conduction coefficient found

°Lo
in the present work is given by Hﬁ+l/2 = paCj+1/2 (see Figures 19 through

29). Thus, if were used, the values for Hj+l/2 would have already

oA
been calculated. It now seems that a good value for Dj+l/2 might also

be given by the product of density and sound speed, though this was not
tried. Mass diffusion (see Figures 5, 8, 9, 10, and 21) terms left the
density too low in the reflected shock in all cases where the oscillations
were reduced with terms characterized by Ci # 0 and c, # 0. Therefore,
the mass diffusion term is taken out (Cj = 0). Figures 2, 3, 4, 6, 11,
12, and 15 show clearly the results of differencing p, 88 Type I. Thus,
if stagnation regions are to be present, Pg and Va should be differenced
as Type III or IV. The above diffusion terms make the density continuous
in any given material. This fact, plus the fact that one wishes to move
the mass as accurately as possible through the mesh, makes the author
prefer Type III differencing for Py, and Va' Type IV takes less machine
time and appears nearly as good (see Figures 28 and 29) for this problem.
If there is to be no stagnation region, then the results given by Figure 7
appear to be the simplest and fastest method of differencing for the pis-
ton problem. To summarize, Figure 19 gives wﬁat we call the best scheme
(see also Figures 23, 25, 26, and 27) if the problem at hand is to have

regions where the Mach number is less than unity. The terms characterized
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by Cl 74 0 and Cegé 0 may be set to zero in a region of high Mach number
to avoid excessive spreading of shocks. However, this was not done in
any of the test problems of this paper.

We will now present the results of the study of the fractured dia-
phragm problem. The same gas constants as used for the piston problem
are used for both materials of the diaphragm problem. The best results
obtained are shown in Figure 30. It may be noted that the "pest" dif-
ferencing scheme for the piston problem was used, If Type IV differencing
is used for Py and Va’ then one obtains exactly the same curves. If the
two explicit diffusion terms are not "cut off," then the rarefaction at
its left side is four cells ahead of where it should be instead of the
two cells as shown. In each case the ultimate speed was correct. Since
the rarefaction wave and the contact discontinuity present the two new
difficulties in the diaphragm problem and since the differencing scheme
with "cut off" gives the best rarefaction wave, the main problem is the
contact discontinuity. The initial values at time zero and the theoret-
ical values are both represented as straight lines (Figure 30).

The contact discontinuity or interface is contained in one cell.
Physically, the velocity and pressure are continuous at the contact dis-
continuity. Thus, a desirable scheme would be to carry one velocity,
two temperatures or internal energies, and two densities for the inter-
face cell. Schemes such as this but which carry only one temperature

for the interface cell were tried and gave very poor results in
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t@e temperature and density curves, because the pressure tends to remain
constant. Scﬁemes ﬁhiéhréarry 5nly one density in the interface cell
were not considered, since we did not wish to allow one material to
diffuse into another. Call the contact discontinuity cell or interface
cell JC. TFrom Figure 31, we see that we must carry the volume of one of
the materials in JC. We carry the volume of material one, X5 and let X,

be computed by x, = 00X = xl. The problem is then to solve two equations

2
like (4) (one for each material), one equation like (5) (with both mate-
rials considered), and two equations like (6) (one for each material) to
advance the mesh values in JC to the next time step. After JC and the

rest of the mesh hawe been advanced one time step (the n + 1 calculation),

the value of Xy is advanced one time step. The equations used to advance

|
Material 1 : Material 2
|
i
I x
=l 2
|
|
|
JC - 1 l 3¢ JC + 2

o

»

]
i_?¢ ——
4
mN

Figure 31
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the mesh values will not be given at thie point but will be given later
in more general two-dimensional form for cylindrical coordinates. The
conditions which are prescribed to solve Egs. (4), (5), and (6) in JC
are: (pV)j+1/2 is zero for material one; (pv)j-l/E is zero for material
two; the pressure in JC is the average of material pressures one and two
1Pt oP
GPJC = ———75———-); the total mass must be accelerated in Eq. (5); (pV)j+l/2
(the work done by the pressure) is zero for material one; and (pv)j-l/z is
zero for material two (ﬁee Egs. (32) and (35)). The terms of Egs. (11),
(12), and (13) are differenced as before except for p_ near JC. When
considering material one, if the differencing calls for a value éf den-
sity in a cell beyond the boundary of material one, the value of the
density used is that of material one in JC. Similarly, the values for
material two densities are extrapolated. Differencing P, @8 Type II at
only the sides of cell JC gave poor results. oA is discontinuous at
the contact discontinuity so that we found a small (less than 2%) bump
in the wvelocity at cell JC. TFor this reason, we set Q equal zero on
each side of JC {Figures30). The heat conduction terms used for each
maperial in its corresponding energy equation were aiso set to zero on
the sides of JC which resulted in little or no change in the mesh values.
At first, an attempt was made to change Xl to its new value by using
an interpolated velocity at xl to find its change in one time step. This
gave large, though bounded, oscillations for all the mesh values at JC,
and these oscillations moved‘along with the propagating shock and rare-

faction. The reason for this very poor result can be seen as follows.
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As the value of X, becomes small, the mass of material two, m, in cell

JC also becomes small and unless calculated very accurately, the two
values will combine to give a poor value of density, which then gives
poor pressures, which in turn lead to poor velocity and energy values.

To eliminate these difficulties, the following scheme was devised. As

2

X, and m, approach zero, we wish the new value of X5 to be such that e
2

will approach Pros1” Also, as xl and m1 approach zero, we want E{ to

approach Prc.1° When both X and X, have values appreciably different

from zero, we wish to combine the above two relations to obtain a mean
m
! 2

and X, =
Pyc-1 Prc+l

value. Let X1 £ ; then the desired relation for x1

2

at the next time step is given by

D+l _ X (8% - X,) + x3(%))

n n

"t

or since 8X = X + Xp,

nel | K0 = myfoge,) + (8% - ) (my /oy y)
Xl =

dx (14)

A1l values on the right of Eq. (14) are obtained from the mesh at the
end of the n + 1 calculation. Equation (14) insures that the densities
in the interface cell will be compatible with the densities in the cor-
responding non-interface cells contiguous to JC. Figure 30 indicates
that this method of calculating x§+l gives the desired result for the

return to Egs. (4), (5), and (6) and the start of a new time cycle.
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There are two methods which may be used to determine whether or not
the interface cell should be changed after Eq. (14) has been calculated.
For the material with the smallest volume, one would test to see if the
mass or volume of this material is likely to go to zero in the next time

cycle. For example, let x§+l < %; . The change in volume in one time

step is given by Bxl = xg*l - x?. If 8x1 >0, then x1 is not decreasing
with time and there should be no chance of JC changing. If 6x1 < 0, then
xl is decreasing and there is a possibility of JC changing. Thus, for
ox, <0, if (:{”1 + 1.03 8x) < 0, the cell should change end if > O,

the cell should not change. The factor 1.03 is used only as an example.
The excess over one of this factor is included to account for accelera-
tions. To test for a cell change by using ml(xil+l <'%?), the most
appropriate method is to calculate by Eq. (4) for material one if all

of mass one will flow out of JC when we go to start a new cycle. Sim-
ilar statements apply when xi*l > %; for material two. The above test

on mass was made in the diaphragm problem. The test on volume takes

less machine time and is more appropriate for two dimensions. Equa-

tion (14) is the same for two dimensions where ¥, becomes the volume

of material one, ®x becomes the total volume of the interface cell,

PIcs1 becomes the density of the nearest non-interface cell of type

two material, and Prc-1 becomes the density of the nearest non-interface
cell of type one material. When changing interface cells in one or two

dimensions, one applies the conservation of mass, momentum, and energy

to each material.
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The calculation of x§+l represents a volume and density change
since there is no mass flow in this boundary calculation. Since
X, + X, = 0x = a const., &x = -0x,. Let P be the pressure at the
interface. The work done on material one is -§8xl and the work done
on material two is +§6x1. Let 81 and 82 be the internal energy per
unit mass in JC for material one and material two, respectively. We

o e

thus replace El by El - —EI— and 82 by Eé + in the interface cell.

In the diaphragm problem (Figure 50), P was calculated as the pressure
1P 4+ 2P

in JC (pjc = ———E——-) using the values of El and 82 which were in the
mesh after the completion of the n + 1 calculation. Since the flow is
to the right in the diaphragm, the values of 81 and 82 are high and
low, respectively, at the end of the n + 1 calculation. The resultant
inaccuracy in p gives the small variations of the calculated density
and temperature near the interface (Figure 30). Though it has not

- _ b + Do
been tried, it appears that the calculation of p as p = JorL 5 Jc-1

would resolve this difficulty in the internal boundary calculation. Of
course, the value of Prc obtained in the n + 1 calculation could be saved
and used for the value of p. This was done in a similar calculation and
found to give good results. If P is a given function of space and time
on an external boundary, then the above method will allow the correct
amount of work to be done on the system..

A difficulty in the diaphragm problem (Figure 30) may be noted.

The shock front is about six cells wide as compared to approximately
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three cells for the infinite shock in the piston problem. This indi-
cates the selected difference scheme will have difficulty following
weak shocks.

A cycle consists of the n + 1 calculation and the boundary
calculation. The boundary calculation consists of a volume change,

the possibility of a cell change, and the internal energy changes.
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CHAPTER II

DIFFERENCING IN TWO DIMENSIONS

Equations (1), (2), and (3) in cylindrical coordinates with no

angular dependence may be written as

d(rpu) _ d(pv)
ror 02z

e

d(pw) _ _ dp _ d(wouw) _ ofpvu):
>t T T 3r ror oz

dpv) _ _ dp _ dxpuv) _ 3(pvv)
3t~ " dz ror | oz

3(pE) _ _ d(rpu) _ 3(pv) _ d(rpukE) _ I(pvE)
Dt T T T ror T oz Tor oz

where u and v are the r- and z-components of the velocity.
We will difference these equations for the mesh represented in
Figure 32. The radius at the center of each cell is given by r;

= dr(i - 1/2) and at the sides by r = idr and r,

i+l/2 i-1/2

(15)

(16)

(17)

(18)

= (i - 1)&r.

In this notation, the volume and areas of the cell (i,J) are given by
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Vq = 2nr.5rdz
i i

Aé’l/z = Aq+l/2 = 27r.dr
i i i

}
Biy/p = 25 1/2%
Aji1/ = B4 /202
-
r
5
L
i
3
o
o) r
I}
1 k—OZ —>
r=20
1 2 3 L
A
r
Figure 32
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from which

-

ad-1/2 A+1/2
1 1

_ -
3 J Bz
Ve vy
A‘? r. 1/2
i-1/2 _ -1/ } (20)
vd i
1

J
Bivi/e  Tisnf2
vd r;oT
i

Differencing Eq. (15) we get

J J J J
A o oy | Jiz1/2 Pi-1/2 Yi1/2 © Tiv1/2 Pisd/2 Yi+1/2
i P T r o7 '

1 1

+ (21)

i21/2 3-1/2  3+l/2 _j+l/2
pq/vq/_pzil/va/]

0z

where all mesh values on the right are at time step n. By Eq. (20),

Eq. (21) may be written as

J JU_8t,Jd J i J J J
Pi "P1 T3 [51-1/2 Pi-1/2 Yi-1/2 = Pis1/2 Piv/2 Vid/2
i

. Ai-l/2 ,3-1/2 vg-l/z i Ag+1/2 Ji¥1/2 Vg'+1/2]

i i i

or simply
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el

J
Py i i

- ol - - [owd /o - (owil ) + (a2 - (o) /2] (22)
Another method to obtain Eq. (22) is to integrate Eq. (1) over the vol-
unme, Vi, convert the right side by Gauss' theorem to a surface integral,
and apprbximate the result assuming Vi is small. This latter method of
evaluation of the divergence is also easy when other coordinate systems
are to be used. To simplify the notation, we will designate quantities
at i, j - 1/2 as side one, at i - 1/2, J as side two, at i, § + 1/2 as
side three, and at 1 + 1/2, j as side four. Thus, Eq. (22) is written

as

et SR .n
in - p‘; = % [(Aou)g - (fou)) + (Bpv); - (ApV)5] (23)
1

or if mass is carried in each cell instead of density

L Nl
wl o = ot ), - (aw), + (Bov)y - (aev) | (@)

1

'Y

where Mi = pg Vi. The (Apu) or (Apv) terms are called the mass flow
terms. They are the mass per unit time flowing across their respective

sides of the cell. If one starts at i = 1 and j = 1 with suitable bound-
ary éonditions, then we need to calculate values for the flow quantities

only on sides three and four. Other similarities to the one-dimensional

cases are used, i.e., values on sides one and three are differenced as

~66-




in one dimension in the j direction for each i, and values on sides two
and four are differenced in the i direction for each j. In Eq. (2&),
mass is seen to be conserved as in the one-dimensional case. Equa-

tions (16), (17), and (18) are differenced similar to Eq. (15) and

give
jn+l jn+l jn J.n 5t Vi
i
- oy vy + o)y vy = (o) ] (25)
jn+l jn.+l jn J.n 5t Vg
Py VY -y vy o= ;5 55 (P - p3) + (pu), v, - (Apu)), v,
i
+ (Apv)y vy - (Apv)3v3] (26)
and
jn.+l jn+l jn jn St
Py E] -0y BEf = " [(Apu)2 - (Apu)) + (Apv), - (Apv)5
i
+ (Aou), B, - (hou)y By + (Bov) B, - (hov)y 5| (27)

In the two-dimensional example to be presented below, the differencing
is like the scheme selected for the disphragm problem. The p's, V's,
and u's for mass flow terms were calculated by Type III differencing.

Py, is the sum of the material pressure on side four and the "cut off"
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value of Q computed with the u's on side four. Similarly, p5 is a sum
on side three using the v's in the velocity gradient portiom of the
viscosity calculation. The pressure times velocity terms in Eq. (27)
are computed as the sum of the heat conduction term and of the above
pressures times the velocities used in mass flow. This sum is then
multiplied by the proper area so that the equivalent differential term
which has been added to Eq. (3) is V - Cy B VE The u's, v's, and E's
which multiply the mass flow terms are differenced as Type II with the
corresponding mass flow term as the flow test number, VT' Q is zero
at r = 0.

The two-dimensional steady state test problem geometry is shown in
Figure 33. We wish to determine the axially symmetric flow about a flat-
nosed cylinder within a cylindrical pipe. The flow of the pélytropic
gas enters on the left side with a Mach number (M) of 1.58, density and
sound speed equal 1.0, and y = 1.k, All cells to the right of j = 14
were assumed to have the same mesh values as those with the correspond-
ing value of i in cell j = 1k. The pipe and obstruction had rigid walls.
Unfortunately, the code was written for the fixed configuration of Fig-
ure 33 and for 8z = dr = 1.0. The left boundary was not far enough
upstream to prevent perturbations near the input (see Figures 33, 3k,

35, 36, and 37) close to the axis. Figures 3k, 35, 36, 37, and 38 show
the input conditions which were held fixed in the j = O cells. The flat
line in J = O was drawn to indicate that the input values of p, u, v, and

@ were used for the corresponding value on the right boundary of this

cell.
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Considering these perturbations and the coarseness of the mesh, it
seems remarkable that certain average results were obtained. The posi-
tion5 of the detached shock is represented by the solid line in Figure 33.
The limits6 of the force on the flat-nosed cylindrical face are 387.0 and
336.4. This gives a most probable experimental value of 361.70. The cal-
culated value at steady state (Figure 40) for this problem gave a corre-
 sponding value of 354.0, i.e., about 2% low. In Figures 33 to 39, the
mesh values at a time of about 40 are plotted. The steady state seemed
to be reached at a time of about 20 (see Figure L40), which required about
45 minutes calculation time. The calculation to the time of about 40 was
performed to see if these perturbations of the mesh values near the input
would cause any change in the steady state values. No change was observed.
As an admittedly rough criterion for locating the shock ﬁosition, we may
take the position of one-half height on the density curves (Figure 3L).
They are plotted in Figure 33. The perturbaﬁion near the input is evi-
dent. The coarseness of the mesh and the presence of diffusion terms
seem to cause the shock and reflected shock at the outside wall to lose
their respective identities and to produce an average position. In an
effort to find some quantity which might serve to differentiate between
the shock and reflected shock, we'have plotted in Figure 39 the tangent
angle of the velocity vector. Since no sudden.change in slope is ob-
served, it is evident that this quantity does not serve the purpose.
Unfortunately, no other single quantity examined has proved useful in

this connection. It should be noted, however, that despite the crudity
(Text continues on page 78.)

-69-



22
21

19

18

17

N oA OO N O W

f—

20

O From 3
00 Mach No. = 1.0

values of p

. < B ad

7 8
j
(8z=1)

Figure 33
-70-




i=7 i=22 _
i=6 i=2l -
i=5 i=17 4

T
]

|

" i=4 i=13 i
- i
L i=3 i=10 ]
N i=2

- 1/2 VALUE ]
L. izl i=8

(] 1 1 I3 1 1 1 L 1 ] 1 1 ] 1 i 1 1 1 1 | 1 | | 1
O |« 2 3 4 5 6 7 8 9 100 I 2 3 4 5 6 7 8 9 10111213 14
J
Figure 34

71-




25
23
21
19

25
23
21

19

25
23
21

19
7
25
23
21

19
\7
25
23
21

19
17

1T 17 1 1717

L1 1 Fn i

[T T N U T U T 2 |

L L L L]

| N TN TN T N S |

| I T |

T 1 1T rrr1rrr

1 1t 1 1 1 3 1

T T T T T 17T

0 S T TS I Y T A |

rryv 11 rrrT

LB _r t 11 11t

2 3 4 5 6 7 8 9

10 0
J

Figure 35
_72-

2 3 4 5 6 7 8 9

14



1.0

05

T

T

E i=7 i=22 g
|  —
E i=6 i=2l :
| —
E is5 P17 ;
E \/
‘e Pe13
: i3 i=10 f
; i=2 i=9 ;
- is =8 1
F TN o
0

2 3 4 5 6 7 8 910 01t 2 3 45 6 7 8 9 10U 121314

J

Figure 36
_n3-




i=22 .

i=2l

i=8

oL« 1+ gt b1 [OR NS VU SUUUS NN NN S NN S N NUS N S|
Ol23456789IO0I2345678910IIIZI3I4 .




i=2l N

06
04 —
o2 b i=1 |
0 _
-0. J 1 1 I 1 1 1

0Ol 2 3 4 5 6 7 89 100 I 2 3 45 6 7 8 9 101 1213 14

j
Figure 38

-5~




<|c

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

i=2l
LEFT SCALE

i=20
RIGHT SCALE

i=22
LEFT SCALE

0

i 2 3 4 5 6 7 8 9 1011 12 13 14
j

Figure 39
~76-

0.16

0.14

0.2

0.1

<|C

0.08

0.06

0.04

0.02



0F aandrd

(91/71=48) INIL

o2 Gl (o] G 0
T T T T - o0]]

I 00¢

— : _ -1 00¢
1041 .

llllllllllllllllllllllllllllllll ———— 28

-1 006

- 009

- -1 004

-77-

30404



of the one-half height criterion, the position of the shock front is cor-

rect to within a cell siée. The calculated sonic line in Figure 33 was -
obtained from plots of the Mach number (Figure 37). The vectors in Fig-

ure 33 show the direction of flow but not the magnitude (see Figures 36

and 38). The normal component of the velocity in the cells next to- the

flat-nosed suiface extrapolates to zero (Figufe 36). The spread of about

six cells in this weak shock is again evident as it was in the diaphragm

problem.

For a two-dimensional problem which has a moving interface between
meterials (Figure 41), the only new difficulty introduced is that of cal-
culating the partial areas for the mass flow and work (pV) terms. The
criterion that each interface cell must have two, and only two, adjoining
interface cel;s_leads to six types of three interface cell combinations
(Figure 41). To maintain the interface normal to outside boundary walls
will require special interface cell types. These special cells should be
maintained such that only one interface cell will be next to an outside
boundary where the interface terminates. Two interface cells at i =1
(with consecutive J va;ues), for example, would violate the above crite-

rion. The conservation of mass for each material will be given by (see

Eq. (24))

1.n+¢l 1.n 1 1 1 1 '
My -y =6t [<Apu>2 - (pu), + (Bov), - (Apv)3:| (28)

and
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2.0+l 2.n 2 2 2 2
Mi - Mi = 5t [kApu)z - (Apu)4 + (Apv)l - (AOV)3 (29) -

where the superscripts 1 or 2 indicate the material. As an iilustration
of the evaluation of the mass flow terms in Egs., (28) and (29), consider
a Type T interface cell in (i,j) with material 1 to the right and sbove
and with material 2 to the left and below. In this case, il = 0, ia =0,

A= Al,.and A2 = Ay A scheme must now be devised to calculate one of

1 2
the partial areas on side three and side four since A3 = A3 + A3 and
1 2 :
Ah = Ah + Ah" The simplest scheme appears to be given by using a linear
combination of the partial volumes, i.e.,
o 2, 1 »ﬂ " o 1;"7:‘»"‘2""‘ e ,
e viev? vJ+l R V/ VL P A
Ay = As e : ’
= VTV ‘
and '
lj lj [
i vi * V1+1
h - 20r

Other schemes which use the given partial volumes in several cells and
atteﬁpt curve fits lead to quadratic, cubic, and higher order equations
which should be avoided if possible. A code is being prepared which uses
the simple scheme mentioned above. This code will calculate the values
of the density on the cell bdundary vhich joins two interface cells by
Type I differencing and will use Type III differencing with extrapolation

elsevhere. The values of u and v are continuous through the interface
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and are to be calculated as before, Pressures are calculated as in the

diaphragm problem. The viscosity and heat conduction terms are to be

zero at the boundary of any interface cell. Equations (25) and (26) for

an interface cell become

\
(1.n+1 2jn+l) g+l (ljn 2.0 ) o [vi
M']?L e Ju o -\M o+ Jul =0t = (25 - 1)
1 2 1 2 L
w‘{(.l’-pu)2 + (Apu)e} u, - {(Apu)l‘L + (Apu)u}uu (30)
1 2 1 2
+ {(Apv)l + (prr)l}u-‘L - {(Apv)3 + (Amr)j}%
/
and
~
1.n4l 2.0+l n+l l.n 2.n .n V‘.j
(Mg + )"i - (Mi + 103 )vi = St[E% (p - 25)
' 1 2 1 2
w{tsow), + ow), Jr, - {uon)y + o) v, SC
1 2 1 2
+ {(Apv):L + (Apv)l} v, - {(Apv)-3 + (Apv)B}v5] :
' J

Equation (27) must be solved for each material; thus, it takes the fol-

lowing form:

1.n41 1,041 1.n 1 1 1 1
- M
i

S B
i i

1 1

1.n 1 1
Ei = ot [(Apu)z E, - (Apu)lp E) + (Apv)l E, - (Apv)j.l E}

1 1 1 1
+ {(Apu)2 - (Apu)), + (Apv), - (APV)B}] (32)
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20+l 2.4l 2.0 2.n 2 2 2 2 2 2 2 2
My B - Mi Di = 8t | (Apu), B, - (Apu), B + (Aov), E - (Aov); By
2 2 2 o |

+ {(Apu)2 - (8pu)) + (Apv), - (,APV)5} (33)

The cycling of this problem would be as follows: One first calculates
the values at time n + 1 for the whole mesh using Egs. (23), (25), (26),
and (27) for non-interface cells and Egs. (28), (29), (30), (31), and
(33) for interface cells. Then the calculations aré made for each inter-
face cell of the moving boundary. These calculations give the new values
of the partial volumes, the interface cell changes, and the new values of
the internal energy resulting from the volume change. The C&cle is then

repeated. This procedure is merely the two-dimensional analogue of the

method used in the diaphragm problem.
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